first.stg.math

Introduction

Number sets and interval notation

1- Number sets :- A set is a collection of objects or things.
For example:
$V=\{a, b, c, d\} \quad, E=\{$ even numbers $\}=\{2,4,6,8,10 \ldots\}$ are both sets.
$1-V$ is a finite set as it has a finite number of elements.
2- E is an infinite set as it has infinitely many elements.
And :
(Empty Set) A set containing no element is called an empty set or a null set. Notations \{\} or \varnothing denotes empty set.

Examples: $1-p=\{n \mid n$ is a natural number less then 8$\}$
$2-S=\{x \mid x n$ is a natural number whose square is less then 25$\}$
$3-R=\{x \mid x$ is a real number between 0 and 2$\}$

* We use the symbol \in to mean "is a member of" or "is in". So, a $\in \mathrm{V}$ and $28 \in \mathrm{E}$, but $\mathrm{h} \notin \mathrm{V}$ or 119 $\notin \mathrm{E}$.

Equal Sets :- Two sets are said to be equal if they contain the same elements
Subset :- A set A is said to be a subset of a set B if every element of set A is also an element of set B

Examples:

1) Let $A=\{1,2,3\}$ and $B=\{a, 1,2,3\}$. Since every element of set A is also in $B A$ is a subset of B

Notation: $\boldsymbol{A} \subseteq \boldsymbol{B}$ means \boldsymbol{A} is a subset of \boldsymbol{B}

2) Let $D=\{0,2,3,4,5,6, a, b, c, d, e, g\}$. Answer the following as True or False.
a) $\{0, g\} \subseteq D$
b) $\{0,1,3, a\} \subseteq D$
c) $\{0,1,6, a, f\} \subseteq D$
3) let $N=\{1,2,3, \ldots\}, B=\{n \mid n$ is an odd natural number $\}$, and $C=\{x \mid x$ is prime number $\}$. Answer True or False.
a) $B \subseteq C$
b) $N \subseteq B$
c) $B \subseteq N$
d) $C \subseteq N$

Lecturer: Fatima hameed

first.stg.math

Pictorial Representation of a Set: Venn Diagrams

Pictorially, a non-empty set is represented by a circle-like closed figure inside a bigger rectangle. This is called a Venn diagram. See fig below

Operation on Sets There are three types of set operations; Intersection denoted by $\quad \Omega$, union denoted by U, and complementation.

Definitions: Let A and B be sets
1- The union of A and B is denoted by $A \cup B$ and is defined as the set of all elements that are in A or B. That is $A \cup B=\{x ; x \in A$ or $x \in B\}$.

2- The Intersection of A and B is denoted by $A \cap B$ and is defined as the set of all elements that are in A or B. That is $A \cap B=\{x ; x \in A$ and $x \in B\}$.

3- The Complement of B in A is denoted by $A-B$ or $A \backslash B$ and is defined as the set of all elements that are in A but not in B. That : $A \backslash B=\{x ; x \in A$ and $x \notin B\}$.

4- The absolute complement of set A denoted by A^{\prime} and is defined by:
$A^{\prime}=\{x ; x \in U$ and $x \notin A\}$, here U is the universal set.

Examples: Venn Diagrams

The Universal Set is represented by a rectangle. The shaded regions represent, respectively, the union, intersection and complement of the sets A and B.
a) $A \cup B$

b) $A \cap B$

c) $A-B$

d) A^{\prime}

Lecturer: Fatima hameed

Examples 1: Let A, B, and C be sets given as follows
$A=\{-3,-1,1,3,5,7\}$
$B=\{x: x$ is an even natural number less then 6$\}$
$c=A$ set consisting of squares of the first two nstural numbers
Compute : a) $A \cup B$
b) $A \cap B$
c) $A-B$
d) $B-C$
e) $(A \cup B) \cup C$
f) $A-(B \cup C)$
g) $(A \cap B)-(A \cup C)^{\prime}$

Sol;
a)
b)
c)
d)
e)
f)
g)

EXERCISE (1) :-
Let the universal set be $E=\{$ whole numbers less than 20$\}$,
and let $A=\{$ squares less than 20$\}$
$B=\{$ even numbers less than 20$\}$
$C=\{$ odd squares less than 20$\}$
1- Draw A and C on a Venn diagram
2- Draw B and C on a Venn diagram
3- Shade $A \cup B$ on a Venn diagram
4- Shade $A \cap B$ on a Venn diagram.
EXERCISE (2) :-
Compute : a) $A \cup B$
b) $A \cap B$
c) $A-B$
d) $B-C$
e) $(A \cup B) \cup C$
g) $(A \cap B)-(A \cup C)^{\prime}$

Lecturer: Fatima hameed

The Real Number System

The Set of Real Numbers R is made up two disjoint set of Numbers:

- The Set of Rational Numbers and
- The Set of Irrational Numbers

Sets of Numbers in the Real Number System

