Locturer : Fatima hameed Introduction

first.stg.math

Number sets and interval notation

1-Number sets :- A set is a collection of objects or things.

For example:

 $V = \{a, b, c, d\}$, $E = \{even numbers\} = \{2, 4, 6, 8, 10...\}$ are both sets.

1- V is <u>a finite</u> set as it has a finite number of elements.

2- *E* is *an infinite* set as it has infinitely many elements.

And :

(*Empty Set*) A set containing no element is called an empty set or a null set. Notations {} or Ø denotes empty set.

Examples: 1- $p = \{ n | n \text{ is a natural number less then 8} \}$

2- $S = \{ x \mid x \text{ n is a natural number whose square is less then 25} \}$

3- $R = \{ x \mid x \text{ is a real number between 0 and 2} \}$

* We use the symbol ∈ to mean "is a member of " or "is in". So, $a \in V$ and $28 \in E$, but $h \notin V$ or 119 $\notin E$.

Equal Sets :- Two sets are said to be equal if they contain the same elements

Subset :- A set A is said to be a subset of a set B if every element of set A is also an element of set B

Examples:

1) Let $A = \{1, 2, 3\}$ and $B = \{a, 1, 2, 3\}$. Since every element of set A is also in B A is a subset of B

Notation: $A \subseteq B$ means A is a subset of B

2) Let $D = \{0, 2, 3, 4, 5, 6, a, b, c, d, e, g\}$. Answer the following as True or False.

a) $\{0,g\} \subseteq D$ b) $\{0, 1, 3, a\} \subseteq D$ c) $\{0, 1, 6, a, f\} \subseteq D$

3) let $N = \{1, 2, 3, ...\}$, $B = \{n \mid n \text{ is an odd natural number }\}$, and $C = \{x \mid x \text{ is prime number }\}$. Answer *True or False.* a) $B \subseteq C$ b) $N \subseteq B$ c) $B \subseteq N$ d) $C \subseteq N$

Locturor : Fatima hamood Pictorial Representation of a Set: Venn Diagrams

first .stg.math

Pictorially, a non-empty set is represented by a circle-like closed figure inside a bigger rectangle. This is called a Venn diagram. See fig below

Operation on Sets There are three types of set operations; Intersection denoted by Π , union denoted by U, and complementation.

Definitions: Let A and B be sets

1- The **union** of A and B is denoted by $A \cup B$ and is defined as the set of all elements that are in A or B. That is $A \cup B = \{x; x \in A \text{ or } x \in B\}$.

2- The **Intersection** of A and B is denoted by $A \cap B$ and is defined as the set of all elements that are in A or B. That is $A \cap B = \{x; x \in A \text{ and } x \in B\}$.

3- *The Complement* of *B* in *A* is denoted by A - B or $A \setminus B$ and is defined as the set of all elements that are in A but not in B. That : $A \setminus B = \{x; x \in A \text{ and } x \notin B\}$.

4- The absolute complement of set A denoted by A' and is defined by:

 $A' = \{x; x \in U \text{ and } x \notin A\}$, here U is the universal set.

Examples: Venn Diagrams

The Universal Set is represented by a *rectangle*. The shaded regions represent, respectively, the *union, intersection* and *complement* of the sets A and B.

Lecturer : Fatima hameed

first .stg.math

Examples 1: Let A, B, and C be sets given as follows

 $A = \{-3, -1, 1, 3, 5, 7\}$

 $B = \{x: x \text{ is an even natural number less then 6}\}$

c = A set consisting of squares of the first two nstural numbers

Compute : a) $A \cup B$		b) $A \cap B$	<i>c</i>) <i>A</i> − <i>B</i>	<i>d</i>) <i>B</i> − <i>C</i>
	$e) \ (A \cup B) \cup C$	$f) A - (B \cup C$) g)	$(A \cap B) - (A \cup C)'$
Sol;				
<i>a</i>)				
b)				
<i>c</i>)				
d)				
<i>e</i>)				
<i>f</i>)				
g)				

EXERCISE (1) :-

Let the universal set be $E = \{ whole numbers less than 20 \}$,

and let $A = \{ squares less than 20 \}$

 $B = \{ even numbers less than 20 \}$

 $C = \{ odd squares less than 20 \}$

1- Draw A and C on a Venn diagram

2- Draw B and C on a Venn diagram

3- Shade A \cup *B on a Venn diagram*

4- Shade $A \cap B$ on a Venn diagram.

EXERCISE (2) :-

 $Compute:a) A \cup B$

b)
$$A \cap B$$

c) $A - B$
d) $B - C$
e) $(A \cup B) \cup C$
g) $(A \cap B) - (A \cup C)'$

Lecturer : Fatima hameed <u>The Real Number System</u>

The Set of Real Numbers R is made up two disjoint set of Numbers:

- The Set of Rational Numbers and
- The Set of Irrational Numbers

first.stg.math

4